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Endothelial dysfunction plays a central role in the pathogenesis of acute respiratory distress syndrome

(ARDS) with COVID−19. Transient receptor potential vanilloid 4 (TRPV4), a cation channel ubiquitously

expressed, can regulate inflammatory cytokines that play key roles in acute lung injury/ARDS. However,

it is unknown whether spike proteins can affect TRPV4 activity and related Ca2+ signaling in pulmonary

microvascular endothelial cells. We hypothesized that spike protein causes activation of TRPV4 channels,

resulting in increases in intracellular Ca2+, which may lead to pulmonary endothelial dysfunction.
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