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Breast Implant Associated Anaplastic Large Cell Lymphoma (BIA−ALCL) has been recently recognized by the

World Health Organization as a T−cell lymphoma associated with breast implants of women after reconstructive

surgery for breast cancer, prophylactic mastectomy because of high genetic risk for breast cancer, or

cosmetic reasons. Patient survival is significantly improved by detection of BIA−ALCL when remaining

localized to an effusion/seroma and lining of the peri−implant capsule. Benign seromas are more common and

must be distinguished from BIA−ALCL for patient management.,
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