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Surgical site infections (SSIs) are a main contributor to surgical morbidity and mortality1. This problem is

exacerbated by antibiotic−resistant bacteria and biofilms2. Previous efforts have found silver carboxylate

(AgCar) released via a titanium dioxide−polydimethyl siloxane (TiO2−PDMS) matrix to be efficacious against

antibiotic−resistant bacteria3. While much is known about the antimicrobial properties of silver, little

is known about silver carboxylate's ability to combat biofilms and their respective persister cells4. The

purpose of this study is to evaluate the ability of silver carboxylate to penetrate and disperse biofilms and

eradicate persister cells in a clinical strain of Staphylococcus aureus (S. aureus)5.
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